

Available online at www.sciencedirect.com

Resuscitation Plus

journal homepage: www.elsevier.com/locate/resuscitation-plus

Esmolol in persistent ventricular fibrillation/tachycardia with de-emphasised adrenaline – Introducing the REVIVE project

Thomas Gleeson-Hammerton^{*a*,*}, Julian Hannah^{*d*,*f*}, John Pike^{*a*,*b*}, Matthew Taylor^{*c*}, James Raitt^{*b*}, Peter Owen^{*d*}, David B. Sidebottom^{*g*,*h*}, Adam Watson^{*i*}, David Jeffery^{*j*}, James Plumb^{*d*,*e*,*f*}

Keywords: Refractory/recurrent ventricular fibrillation/tachycardia, Persistent ventricular fibrillation/tachycardia, Esmolol, Adrenaline

Dear Professor Perkins,

Out-of-hospital cardiac arrest (OHCA) secondary to refractory or recurrent ventricular fibrillation or pulseless ventricular tachycardia (rVF/VT) presents a unique challenge for pre-hospital clinicians, and typically has worse outcomes than non-refractory VF/VT. In a recent registry study 56 % of patients presenting in a shockable rhythm fulfilled the most common definition of refractory VF (3 or more shocks)¹. Unfortunately, refractory and recurrent shockable rhythms have often been lumped together, mostly due to the unavailability of 'see through technology' and the pragmatic nature of clinical trials in this field². We have therefore chosen to coin the term 'persistent VF/VT' to encompass true refractory, but also recurrent VF/VT.

Excessive catecholamines that co-exist in persistent VF/VT exacerbate myocardial ischemia, induce tachyarrhythmias, and impair the heart's ability to respond to defibrillation. Esmolol is a short-acting beta-1 selective blocker that decreases myocardial oxygen demand, heart rate, and ventricular arrhythmias. By blocking beta-1 receptors, esmolol may improve the heart's responsiveness to defibrillation, stabilise electrical activity and reducing myocardial damage. In this letter, we briefly summarise the evidence for esmolol in persistent VF/VT and introduce a new trial group.

Table 1 Collates the current body of knowledge for the management of rVF/VT with esmolol alone, or in conjunction with other therapies. Most of the studies are small, retrospective and observational. The area lacks a definitive RCT. Despite this, there is a signal that esmolol and/or adrenaline dose reduction increases the likelihood of achieving a return of spontaneous circulation (ROSC). We believe the signal is strong enough to pursue more rigorous research into this treatment modality.

<!?A3B2 tlsb=-0.05'?>We therefore introduce REVIVE - REfractory VF InterVention with Esmolol, a collaborative project between Hampshire & Isle of Wight Air Ambulance, Thames Valley Air Ambulance, Dorset & Somerset Air Ambulance, the Isle of Wight NHS Trust Ambulance Service and University Hospital Southampton NHS Foundation Trust. REVIVE is a mixed-methods project, including a national survey of pre-hospital emergency care services to establish the current landscape of treatment protocols and guidelines for this patient cohort (REVIVE-1), a retrospective observational review of a national database (REVIVE-2), and a pilot study (REVIVE-3). The pilot study will be a multi-centre feasibility randomised controlled trial, evaluating the combination of esmolol and de-emphasised adrenaline when compared to standard care for OHCA secondary to persistent VF/VT. Should the pilot study be successful, a larger randomised controlled trial can be pursued. We hope that our research collaborative will add to the evidence base for the management of this complex patient group.

https://doi.org/10.1016/j.resplu.2024.100842

Received 9 December 2024; Accepted 10 December 2024

2666-5204/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

^{*} Corresponding author at: Isle of Wight NHS Trust Ambulance Service, St Mary's Hospital, Parkhurst Rd, Newport, Isle of Wight PO30 5TG, United Kingdom.

E-mail addresses: thomas.gleeson-hammerton@nhs.net (T. Gleeson-Hammerton), Julian.Hannah@uhs.nhs.uk (J. Hannah), john.pike1@nhs.net (J. Pike), matt.taylor@dsairambulance.org.uk (M. Taylor), james.raitt@tvairambulance.org.uk (J. Raitt), Peter.Owen@uhs.nhs.uk (P. Owen), David. sidebottom@scas.nhs.uk (D.B. Sidebottom), adam.watson@uhs.nhs.uk (A. Watson), drnj@redherring.co.uk (D. Jeffery), j.plumb@soton.ac.uk (J. Plumb).

Table 1	
---------	--

No.	Date	Authors	Methods	N=	Results		
1	2024	Watson et al. ³	Retrospective observational review of patient care records, single centre HEMS. De- emphasised adrenaline & esmolol administration.	124	'De-emphasised' adrenaline associated with sustained ROSC		
2	2023	Stupca et al. ⁴	Retrospective cohort study of medical records, multicentre ambulance service. Esmolol, de- emphasis of adrenaline and vector change defibrillation vs standard care.	126	Intervention group less likely to obtain ROSC, similar incidence of neurologically intact survival between groups.		
3	2022	Patrick et al. ⁵	Retrospective observational cohort study, single ambulance service. Esmolol vs standard care.	133	Esmolol may be associated with increased likelihood of ROSC.		
4	2020	Miraglia et al. ⁶	Systematic review & meta-analysis	66	Likely greater rate of sustained ROSC, survival to ICU, survival to discharge and survival favourable neurological outcome with esmolol		
5	2019	Gottlieb et al. 7	Systematic review & <i>meta</i> -analysis.	115	Greater rate of ROSC (temporary and sustained), survival to ICU, survival to discharge and survival favourable neurological outcome with esmolol		
6	2016	Lee et al. ⁸	Retrospective observational review of patient care records, single centre ED. Esmolol vs standard care.	41	Greater rate of sustained ROSC, survival to ICU, survival to discharge and survival favourable neurological outcome with esmolol		
7	2014	Driver et al. ⁹	Retrospective observational review of patient care records, single centre ED. Esmolol vs standard care.	25	Greater rate of ROSC (temporary and sustained), survival to ICU, survival to discharge and survival favourable neurological outcome with esmolol		
8	2000	Nademanee et al. ¹⁰	Prospective observational study, single centre ED comparing multiple forms of sympathetic blockade (including esmolol) to standard ACLS.	49	Higher survival rate in patients with sympathetic blockade, when compared to standard ACLS.		

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

Funding: The authors have not received any funding for this article.
CRediT: TGH Writing – original draft preparation, J. Pike Writing

– reviewing and editing, J Raitt- conceptualisation, reviewing, editing, M Taylor- reviewing and editing, J. Plumb- conceptualisation, writing, reviewing, editing and overall decision making. All author study group members- reviewing and editing.

Author details

^aIsle of Wight NHS Trust Ambulance Service, St Mary's Hospital, Parkhurst Rd, Newport, Isle of Wight PO30 5TG, the United Kingdom of Great Britain and Northern Ireland^bThames Valley Air Ambulance, Stokenchurch House, Oxford Road, Stokenchurch HP14 3SX, the United Kingdom of Great Britain and Northern Ireland ^cDorset and Somerset Air Ambulance, the United Kingdom of Great Britain and Northern Ireland ^dHampshire & Isle of Wight Air Ambulance, F4 Adanac Park, Adanac Drive, Nursling, Southampton SO16 0BT, the United Kingdom of Great Britain and Northern Ireland ^eClinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, the United Kingdom of Great Britain and Northern Ireland¹Perioperative & Critical Care Theme, NIHR Southampton Biomedical Research Centre, Southampton, the United Kingdom of Great Britain and Northern Ireland ^gDepartment of Anaesthesia and Intensive Care, Södertälje Sjukhus, Stockholm, SE ^hSouth Central Ambulance Service, Hampshire, the United Kingdom of Great Britain and Northern Ireland ⁱUniversity Hospital Southampton, Southampton, SO16 6YD, the United Kingdom of Great Britain and Northern Ireland^jPPIE Representative, the United Kingdom of Great Britain and Northern Ireland

REFERENCES

- 1. Harrysson L et al. Survival in relation to number of defibrillation attempts in out-of-hospital cardiac arrest. Resuscitation 2024;205.
- Nas J et al. Importance of the distinction between recurrent and shock-resistant ventricular fibrillation: call for a uniform definition of refractory VF. Resuscitation 2019;138:312–3.
- Watson A et al. Outcomes of a 'de-emphasised' adrenaline strategy for refractory ventricular fibrillation. Resusc plus 2024;19:100716.
- 4. Stupca K et al. Esmolol, vector change, and dose-capped epinephrine for prehospital ventricular fibrillation or pulseless ventricular tachycardia. Am J Emerg Med 2023;64:46–50.
- Patrick C et al. Feasibility of prehospital esmolol for refractory ventricular fibrillation. J Am Coll Emerg Physicians Open 2022;3(2) e12700.

- Miraglia D, Miguel LA, Alonso W. Esmolol in the management of pre-hospital refractory ventricular fibrillation: a systematic review and meta-analysis. Am J Emerg Med 2020;38 (9):1921–34.
- Gottlieb M, Dyer S, Peksa GD. Beta-blockade for the treatment of cardiac arrest due to ventricular fibrillation or pulseless ventricular tachycardia: a systematic review and meta-analysis. Resuscitation 2020;146:118–25.
- 8. Lee YH et al. Refractory ventricular fibrillation treated with esmolol. Resuscitation 2016;107:150–5.
- 9. Driver BE et al. Use of esmolol after failure of standard cardiopulmonary resuscitation to treat patients with refractory ventricular fibrillation. Resuscitation 2014;85(10):1337–41.
- Nademanee K et al. Treating electrical storm: sympathetic blockade versus advanced cardiac life support-guided therapy. Circulation 2000;102:742–7.