Pre-hospital hypertonic saline for traumatic brain injury

<u>Adam J. R. Watson^{1,2,3*}, Ryan Riordan¹, Tim Nicholson–Roberts^{1,4,5}, Jamie Plumb^{2,3,4}</u>

- 1 University Hospital Southampton NHS Foundation Trust, Southampton, UK
- 2 Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- 3 Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, Southampton, UK
- 4 Hampshire & Isle of Wight Air Ambulance, Nursling, UK
- 5 Academic Department of Military Anaesthesia and Critical Care, Royal Centre for Defence Medicine, Birmingham, UK

*correspondence to adam.watson@doctors.org.uk

INTRODUCTION

- Raised ICP is common following severe TBI.
- Hypertonic saline (HTS) lowers ICP but robust evidence of mortality/morbidity benefit lacking.

Variable	HTS given (n = 32)	HTS not given (n = 72)	p value
Best GCS	5 (4 – 6)	7 (6 – 10)	<0.001
Any FDPs	30 (94)	17 (24)	<0.001
Any MAP < 80mmHg	19 (59)	33 (46)	0.2881
Any SpO2 < 92%	13 (41)	30 (42)	0.999
30-day mortality	19 (59)	22 (31)	0.009
Herniation on CTH	10 (31)	9 (13)	0.026
1 st Sodium (mmol/L)	140 ± 4	137 ± 4	0.008
1 st NLR ratio	8.8 ± 4.7	11.5 ± 7.7	0.030

- There is very limited data on pre-hospital HTS use and none applicable to HEMS in the UK.
- Despite this, HTS widely used by HEMS as a rescue therapy for impending brain herniation.
- HTS may also have anti-inflammatory properties.
- We aimed to investigate pre-hospital use of HTS in patients with severe TBI.

METHODS

- **Design**: retrospective cohort study
- **Setting**: Hampshire & Isle of Wight Air Ambulance
- Period: 1st August 2018 to 31st October 2023
- Inclusion: ≥16 year olds with blunt TBI requiring Pre-Hospital Emergency Anaesthesia.
- **Exposure Variable**: 50–100ml of 5% HTS given according to clinician discretion.
- Primary Outcome: 30-day mortality

RESULTS

- 104 patients (66% male, median age 53 years), of whom 32 received HTS.
- HTS use independently associated with higher serum sodium and lower NLR.
- Two or more of GCS ≤ 5, HR ≤ 70 SBP ≥ 180mmHg, or FDPs best predictor of impending herniation (95% sens and 64% spec).
- Secondary Outcomes: CT head findings serum Na and neutrophil/lymphocyte ratio (NLR, a marker of systematic inflammation).
- Main Confounders: GCS, fixed dilated pupils (FDPs), hypotension, hypoxia, time to hospital
- **Analysis**: descriptive, with multivariable logistic and linear regression.

DISCUSSION

- We show for the first time that pre-hospital HTS use is independently associated with increased Na and better NLR on hospital admission.
- Further work is needed to define optimum dose and administration criteria.

University Hospital Southampton NHS Foundation Trust

HAMPSHIRE AND® ISLE OF WIGHT AIR AMBULANCE

